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Abstract—Numerical solutions for heat transfer in the unsteady laminar boundary layer resulting from

incompressible flow past an impulsively-started semi-infinite wedge are described. The motion of the

wedge is steady after the impulsive start. A forced-convection thermal boundary layer is produced by

the sudden imposition of a constant temperature difference between the wedge and the fluid as the

motion is started. Solutions for the simultaneous development of the thermal and momentum boundary

layers are obtained by a time-asymptotic finite-difference procedure. Results of calculations are presented
for several wedge angles with Prandtl numbers in the intermediate range.

NOMENCLATURE
b, constant, see equation (18);
¢y,  fluid specific heat at constant pressure;
20, L .
foo  =—3, local friction coefficient;
pU
h,, local heat-transfer coefficient;
k, fluid thermal conductivity;
L, reference length;
n, exponent in inviscid velocity relation, see
equation {1);
h.x*
Nu,, = , local Nusselt number;
Pr, = S’f—, Prandtl number;
*
Re,, = x Up’ local Reynolds number;
Ur* . . .
t, = = nondimensional time;
u, = y*/U, nondimensional velocity in surface
direction;

U, reference velocity;

ULp\'
v, = <_p) U*/U,
U

nondimensional velocity in direction normal
to surface;

v, transformed normal velocity, see
equation (9¢);

X, x*/L, nondimensional coordinate along
surface of wedge;

ULp\!"2
¥, = (—p> y*/‘{ﬂ
H

nondimensional coordinate normal to wedge.

Greek symbols
B, wedge angle, see equation (2);
g, similarity coordinate, see equation (8a);
n, transformed normal coordinate, see
equation (8b);
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0, = °  nondimensional temperature;
w fe

78 fluid viscosity;

' transformed coordinate, see equation (1b);

0, fluid density;
O, surface shear stress;

7, similarity coordinate, see equation (14).
Subscripts
e, conditions at edge of boundary layer;
w, conditions at surface of wedge.
Superscript
* dimensional quantity.
INTRODUCTION

THE PROBLEM of heat transfer in the laminar boundary
layer resulting from the flow of an incompressible
fluid past a semi-infinite wedge set impulsively into
motion is of considerable practical and theoretical
interest. The heat-transfer problem is idealized as
follows. The wedge and the fluid are assumed to be
initially at the same temperature. A forced-convection
thermal boundary layer is then produced by the sudden
imposition of a constant temperature difference be-
tween the wedge and the fluid as the motion is started.
The simultaneous development of the thermal and
momentum boundary layers is the subject to be con-
sidered herein.

The evolution of the boundary-layer flow in time is
characterized by the existence of three distinct flow
regions. Initially, at a fixed position along the surface
of the wedge the boundary layers formed are indepen-
dent of upstream flow history. For a flat plate this
region is equivalent to the flow analyzed by Rayleigh
[1] for an infinite plate. Ultimately, the flow tends to
the familiar self-similar, steady, Falkner-Skan or
Blasius momentum boundary layers with their asso-
ciated thermal boundary layers. The intermediate
region in which the flow develops from the initial to
the ultimate state is somewhat more complex and its
solution is more difficult to obtain.
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F1G. 1. Viscous flow regions for impulsive wedge flow.

A unified approach to the solution of the boundary-
layer equations in the three regions is presented in
this paper. The characteristic arrangement of these
regions in the x—¢ plane is illustrated in Fig. 1.

The salient features of the formulation of the problem
were described by Stewartson [2] and an approximate
solution obtained for the momentum boundary layer
over a flat plate. Approximate solutions of various
kinds for the flat plate problem have also been obtained
by several subsequent investigators including Schuh
[3], Oudart [4], and Cheng and Elliot [5]. These
approximate solutions suffer from a lack of detail. The
later numerical solutions of Dwyer [6], Hall [7] and
Dennis [8] are significant improvements on the earlier
approximate techniques. Yalamanchili and Benzkofer
[9] discuss the solution of the problem by the method
of weighted residuals with the method of lines. More
recently, Watkins [ 10] describes the numerical solution
by Hall’s [ 7] method of the associated thermal bound-
ary layer for the flat plate.

An approximate solution of the momentum bound-
ary layer for the more general impulsive wedge flow
problem was obtained by Smith [11]. This problem
was subsequently solved numerically by Nanbu [12]
using Hall’s basic method with some improved aspects.
However, until the present work, no solutions of the
thermal boundary layer associated with the Rayleigh—
Falkner—Skan momentum boundary layer for wedge
flow have appeared in the literature.

ANALYSIS
Impulsive flow
The dimensionless velocity for inviscid potential flow
over a sharp wedge is given by

n<l (1)

— n
u, = x",

where x is the dimensionless distance along the surface
from the leading edge. The exponent n is related to the
wedge angle nff where

2n

ﬂ=m~ (2
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In impulsive motion of a wedge in an incompressible
fluid, the inviscid flow described by equation (1) is
established instantaneously. At the same time, a viscous
boundary layer begins to develop adjacent to the
surface. However, the boundary-layer approximation
dictates that the upstream dependence of the viscous
flow propagates with a maximum velocity given by the
local inviscid velocity. Therefore, within the boundary
layer at a fixed distance x, Rayleigh flow exists until
the arrival of the portion of the boundary-layer flow
containing upstream history. The arrival time is

x ds
1= [ L2 3)
JO ue(x)
From which for n # 1
xl-n
= . 4
a—m 4

For n = 1, the stagnation boundary layer, ¢ becomes
infinite and the boundary layer remains Rayleigh in
character.

General equations

Sufficiently far downstream of the leading edge, the
governing equations are the unsteady Prandtl bound-
ary-layer equations for impulsive flow. In nondimen-
sional form these equations are:

ou v
S (5a)
Ox Oy
ou Ou Ju du, 0%u
I e e 5b
o " ox dy e ox oy (S0)
aT oT oT 1 9*T
p U=y (5¢)
ot Ox dy Pr oy

where the effects of frictional heat have been neglected.
The boundary conditions on equations (5) are, at the
surface of the plate

u=v=0 foranyt

y=0 (6)
T=T, fort = 0.
At the boundary layer edge
u=1u,x) t=20
y—o© Q]
T=T, for any .

Similarity

The number of independent variables in the govern-
ing equations can be reduced from three to two by
transforming equations (5) into similarity form. This is
accomplished by introducing the new independent
variables

1-n

X
ST (82)
12
§ = (“;") X0z (8b)

such that { = 1 represents the boundary between the
Rayleigh and Falkner—Skan region. Rayleigh flow
exists for { > 1.



Unsteady heat transfer in impulsive Falkner—Skan flows 397

New dependent variables are defined as follows:

fmu 8=g—  Gab)
V =vy/n—~f'on (%)
where
_1-n
T i4n
The transformed equations are:
V !
‘; 25{g—+f =0 (10a)
) a 62
280 -0 G +82-0+v =L =0 (1on
80 1 8%
l_ _ V_
200(f C)6C+ on P on (10c)

The transformed boundary conditions are, at the
surface

ff=V=0
n=0 (11)
=1
At the boundary-layer edge
f=1
7 — o0 (12)
0=0.

Equations (10) are singular for the case n=1 (stag-
nation flow) with this particular choice of similarity
variables. The case n = 1 will be treated separately. It
should be noted that as { — 0 the ordinary differential
equations for fully-developed Falkner-Skan boundary-
layer flow are recovered. These are:

av
E'l'f =0 (13a)
d 2
B — 1)+V5f;_a_f2=o (13b)
00 1 9%

Nonsingular Rayleigh flow equations

The singularity in equations (10) for the case n= 1
can be removed by a change of independent variable.
The relationship between the new independent variable
7 and the old independent variable { is given by

1
r=6—c= tin+x"" L. (14)
Equations (10) then become
6_V 6f +f'= (15a)
on
a 2 1
2-2z 6f) o +[3(f’2 N+V— y fz 0 (15b)
on oy
00 o0 1 9%
- NV— ————s=0. 15
¥ 2t6f)6'5+V6n Pr o 0 (15¢)
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This form is also convenient in the numerical inte-
gration procedure used in the Rayleigh region
(0 <1 < 1/4) for all cases, including n = 1. The pro-
cedure will be described in a later section.

NUMERICAL SOLUTION TECHNIQUES

Fundamental approach

Equations (10) resemble the equations for steady
two-dimensional nonsimilar boundary layers. Unfor-
tunately, in this case the equations cannot be solved
by the well-known step-by-step initial value methods
normally used for the numerical solution of two-
dimensional boundary layers [ 13}, due to the presence
of the apparent convective velocity term (f'—{). The
term will be negative in regions of the flow where
[ < ¢, simulating a reverse-flow boundary layer with
its attendant solution difficulties. Such difficulties are
caused by the necessity of including the effects of down-
stream influences in regions of the boundary layer
where the flow is locally reversed [ 14]. Because of this
requirement, the problem in the transformed domain
must be posed as a boundary-value problem. The
boundary values at the upstream end ({ = 0) are given
by the Falkner-Skan equations, equations (13). At the
downstream end the situation is less obvious. However,
if the downstream boundary is taken as some point
within the Rayleigh region ({ > 1), boundary values
that are independent of the flow in the transition region
can be obtained by separate solution of the Rayleigh
region. For the flat plate the boundary layer equations
in the Rayleigh region simplify to a form having an
exact solution [ 10]. This simplification does not apply
to the wedge so that a more general approach must
be taken. Since in the Rayleigh flow region (f'—{) is
always negative, the solution of equations (10) for
Rayleigh flow can be accomplished by the step-by-step
integration of equations (10) starting at some point
sufficiently far downstream for the initial condition to
be approximated, and then marching upstream until
the boundary is reached.

It is advantageous to perform this integration in
terms of the independent variable 7 over the finite range
0 < v < 1y, where 1; < 1/§, with the equations in the
form given by equations (15).

The previous approaches to the numerical solution
of this problem are basically of two types. The first,
due to Hall [6], is to attack the nonsimilar equations
directly with a time-dependent numerical method using
aniterative procedure based on satisfying the similarity
condition to obtain a starting approximation. The
second appraoch [7] is to finite difference the equa-
tions in similarity variables solving the problem
iteratively in the transition region as a boundary value
problem. First-order upwind differencing is used for
the convective terms in the reverse flow.

The approach used in the present work is relatively
simple conceptually and is a satisfactory alternative to
the aforementioned approaches. Itis akin to the method
used for the solution of a quasi-steady boundary layer
with an oscillatory free stream by Phillips and Acker-
berg [15]. In applying the present method, the problem
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is formulated as a time-dependent problem in trans-
formed coordinates whose asymptotic steady solution
for large time is the solution to the similar equations,
equations (10). A second-order finite-difference method
for three-dimensional and unsteady boundary layers
with reverse flow is used to obtain the time-asymptotic
solution. This procedure, while exploiting the self-
similar nature of the solution, allows the computation
of more complex impulsively started boundary layers
through the retention of explicit time-dependence. For
example, the method can be easily extended to com-
pute the oscillatory boundary layer or to compute the
case where there is a nonuniform free convection
thermal boundary layer existing before the impulsive
start.

Transition region

The governing equations can be written retaining
their explicit time-dependence in terms of modified
similarity variables, with a new independent variable ¢
defined as

i1-n

X

&= m b>0 (16}
where b is a constant.
Equations (5) become
av o
};1-+25555+f =0 (17a)
o oo g
26(t+b)¢ 5t 268(17~9) 2 +p(f*-1)
B
VE;_E? =0 (17b)
08 , o8 a6
2&(:+b)5~§+25§(f -§}5§+ Vé:7
1 %9
-—13;5;75 =0, (17c)

The surface and inviscid flow boundary conditions for
equations (17) are given by equations (11) and (12). A
positive nonzero requirement is placed on the constant
b such that equations (17) initially apply to a region of
the wedge 0 < x < xq, finite in extent.

This condition is necessary for the stability of the
difference scheme as will be discussed later. It also
allows the simultaneous integration of the equations
for the Rayleigh flow region with the integration of
equations (17). The constant b is related to the initial
extent of the region such thatforr =0at =1

X = Xxo = [b(1—m)JH0 ", (18)

For sufficiently large times, the solution of equations
(17) must asymptotically approach the solution of
equations (10).

Rayleigh region

The Rayleigh flow solution of equations (15) serves
as the downstream end boundary condition for the
numerical solution of equations (17). In the present
work this boundary condition is applied at ¢ = 125,

For ¢ = 1-25 from equations (16) and (14) there is a
correspondence between t ant ¢ expressed by the
relation

t

t+b (19)

T =T

where 7, = 0-8/3.

Therefore, the time-dependent downstream bound-
ary condition for equations {17) can be obtained from
the numerical integration of equations (15) advancing ¢
according to equation (19) as time is advanced from
t = 0 to the asymptotic limit. The choice of ¢ =125
for the downstream boundary which yielded 7, = 0-8/¢
was made from experience; the step-by-step numerical
integration of equations (15) becomes difficult for ©
significantly larger than 0-8/5. A smooth initial profile
for the solution of equations (15) is desirable to avoid
problems in starting the numerical integration. It can
be obtained from the leading term in the perturbation
solution for small t [16] of each of equations (15a)
and (15b}

f=erf[n/\/20]+...
0 = erfe[n/\/2t/Pr)]+....

(20a)
{20b)

The surface and inviscid flow boundary conditions
for equations (15) applicable for all = are given by
equations (11) and (12).

Upstream boundary and initial conditions

With the Rayleigh flow as the downstream boundary,
the other imposed end boundary condition for the
numerical solution of equations (17) is the solution of
the Falkner—Skan equations, equations (13}, since equa-
tions {(17) reduce to the Falkner—Skan equations at the
upstream (¢ = 0) boundary. The surface and inviscid
flow boundary conditions are given by equations (11)
and (12).

The appropriate initial conditions for the solution
of the time-dependent equations, equations (17) are at
t=0forn>0and 0« & <125

=1 0=10. (21)

Figure 2 illustrates schematically the solution pro-
cedure in the £—1 plane.

[ ——

Falkner-Skan boundary

| o8
! Af; St ’ e T8{Ar¥D)
v me .. )
Interior grid fines + ? Boundary grid hne';'
{Krouse method) l {Crank—Nicolson
7=0 - - - N o

-5

=0 {=AE £=125

Initial condition

F1G. 2. Computational scheme.
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Finite difference methods

The Krause second-order, zig-zag, finite-difference
scheme [ 17] was used for the time-dependent numerical
solution of equations (17). It has the feature of utilizing
downstream information at an earlier time in the
development of the flow as well as current upstream
information to predict the properties of a boundary
layer containing local flow reversal.

The method was developed for and has been success-
fully applied to steady three-dimensional boundary
layers with flow reversal [18], [19]. The unsteady
boundary layer can be regarded as a special case of
the three-dimensional boundary layer with one surface
direction viewed as a time-like coordinate. The pro-
cedures for the numerical solution are virtually
identical.

ORI

Global truncation error: O [(A€ )2 14+0[(An )? 1+0[(Ar ]

F1G. 3. Computational molecule for Krause method.

In the present calculation, the computational mol-
ecule for the method was oriented as shown in Fig. 3.
Details of the derivation of finite-difference equations
for the application of the Krause method are given in
[18] and [19]. The method is an implicit technique.

For stability [17] and to avoid the amplification of
round-off errors [20] the time step limitation for the
Krause method is

Al(t+b)

At gt
lf"‘ amnx

22

which for the present computation effecitvely requires
At < Aé(t+b). (23)

Hence, at t = 0 difficulties are avoided by requiring
b > 0. The magnitude of b can also be utilized as a
parameter to adjust the relative amounts of upstream
and previous-time information used in the approach to
the asymptotic steady state. In the present work a value
of b was used corresponding to xo = 2-0.

The step-by-step solution of equations (15) at the
downstream boundary was obtained using the Crank—
Nicolson finite-difference method. The two-point
boundary value problem posed by the Falkner-Skan
equations at the upstream boundary was solved using
the finite-difference method described in [21].

RESULTS AND DISCUSSION

Solutions were computed for n = 1-0, 0-3333, 0-1111,
0-0, — 00654, and —0-0905, corresponding to wedge
angles of #, n/2, n/5, 0, —0-14n and, —0-1997 respect-
ively. Results were obtained for several different Prandt!
numbers in the intermediate range from Pr= 07 to
Pr =100,

In the time-agymptotic calculation for the transition
region the mesh (grid) interval A7 was taken as ¢-05.
The time-step At was 0-99 of the maximum permissible
given by equation (23). Steady-state convergence was
achieved after approximately 200 time-steps. In the
Rayleigh region the maximum integration step size At
was 0-005. As many as 180 mesh intervals were used
in the calculation normal to the surface. To reduce
the amount of computer time required in the transition
region calculation, the mesh was rezoned in the normal
direction from a lesser number of mesh intervals as the
steady state was approached.

The surface heat transfer results expressed in terms
of Nusselt number are summarized for the positive
wedge cases in Figs. 4-7. These figures show the
variation in the quantity Nu, Re; '/? with the indepen-
dent variable 1, where Nu, Re; !/? is obtained from the
slope of the nondimensional temperature profile
through the relation

. _<1+n)“2 20

2 o @9

=0

Figures 4-7 can be used to determine the heat-transfer
coeflicient as a function of time at a given position along
the surface of the wedge.

The agreement of the computed heat-transfer results
in the asymptotic limit as o0 with previously
obtained steady-state results [22] is within three sig-
nificant figures. For reference purposes the temperature
profiles and their wall derivatives are presented in
tabular form in Tables 1-3 for Pr= 07 and n =10,
n=03333 and n = 0-0.
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F1G. 4. Nusselt number variation for n = 1.0,
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Figure 8 shows the computed variation of surface
shear stress in terms of the friction coefficient f,, where
SfxRe}'* is obtained from the siope of the nondimen-
sional velocity profiles through the relation

SfeRel* = [2'(1+n)]”2%[n—, (25)

n=0
Figure 8 includes the friction coefficient for the two
negative wedge angle cases computed, one of them
being the incipient separation case of n = —0-0905. The
heat-transfer solutions for the negative cases were not
computed because of the contrived nature of the
physical flow situation that these cases represent
(suction preceeding a turn). The present results given
inFig. 8, agree closely with previously published results
for the momentum boundary layers on flat plates and
wedges given in [6], [7] and [11].

Table 4 compares the present shear stress results for
n =0 with the results of previous investigations. Be-
cause of the difference between the computational mesh

1 H . PN
o1 19 wo
T

¥1G. 8. Friction coefficient variation.

used in the present calculation and that used by Nanbu
[11], no direct comparison is possible in the results
for n# 0. However, by interpolating between mesh
points for these cases, the agreement in results appears
to be typified by the reasonably close agreement of
Table 4. Greater accuracy than that of the present
results can be achieved by refining the grid. This would,
of course, increase the computer time required. Since
in the present investigation many cases were computed,
it was felt that three significant figures was sufficient
accuracy for the heat-transfer results obtained. Each
combination thermal/momentum boundary layer case
consumed approximately 10-18 min IBM 370/145CPU
time, depending on the Prandtl number. Calculations
for the larger Prandtl number cases utilized a finer grid
and consequently, more time.

In conclusion, the present work indicates that the
time-asymptotic finite-difference technique can be used
to advantage in the computation of the unsteady
laminar momentum and thermal boundary layers for
Rayleigh-Falkner—Skan flows. Further, the results ob-
tained can be used to estimate the transient heat transfer
to wedge shapes undergoing unsteady motion charac-
terized by rapid acceleration to a constant velocity.
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Table 1. Values of the complimentary nondimensional temperature 1 —8 as a function of
n and  for n = 1-0 and Pr = 0-7

401

7= 01 05 1-0 20 40 100 o0
n —00/on = 214 0-989 0-729 0-582 0-510 0-496 0-496
00 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000
01 02107 0-0987 0-0736 0-0582 00510 0-0496 0-0496
02 04072 0-1961 0-1467 01162 0-1020 0-0992 0-0992
03 0-5780 0-2909 0-2189 01739 0-1528 0-1487 0-1487
04 0-7162 0-3818 0-2897 02311 0-2035 0-1980 0-1980
05 0-8200 0-4676 0-3584 0-2874 0-2537 0-2470 0-2470
0-6 0-8927 0-5473 0-4247 0-3428 0-3034 0-2955 0-2955
07 0-9398 0-6202 0-4880 0-3968 0-3523 0-3435 0-3435
08 0-9684 0-6856 0-5479 0-4492 04003 0-3906 0-3906
09 0-9844 0-7434 0-6040 04997 04472 04367 04367
1-0 0-9928 0-7936 0-6560 0-5481 0-4926 04815 04815
1-2 0-9987 0-8722 0-7469 0-6376 0-5786 0-5668 0-5668
14 0-9998 0-9254 0-8203 07162 06569 0-6450 0-6450
1-6 1-0000 0-9590 0-8769 07833 0-7264 07149 0-7149
1-8 1-0000 0-9787 09188 0-8387 0-7865 07759 07759
20 e 0-9896 0-9483 0-8830 0-8370 0-8277 0-8277
25 — 0-9984 0-9980 09532 0-9247 0-9193 09193
30 — 0-9995 0-9994 0-9838 0-9697 09675 09675
40 — 0-9999 0-9996 09982 09974 0-9968 0-9968
50 — 1-0000 0-9999 0-9999 0-9999 0-9999 0-9999
60 — — 1-0000 1-0000 1-0000 1-0000 1-0000

Table 2. Values of the complimentary nondimensional temperature 16 as a function of
n and t for n = 0:3333 and Pr = 0-7

T = 01 05 1-60 20 40 100 ee

= 200 40 1-25 1-0 0-5 02 00
n —06/on = 213 0-961 0-552 0-508 0-471 0471 0471
0-0 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000
01 0-2098 0-0958 0-05512 0-0508 0-0471 0-0471 0-0471
02 0-4054 0-1903 0-1100 0-1015 0-0941 0-0941 0-0941
03 0-5755 0-2822 0-1645 01519 01411 0-1411 0-1411
04 07132 0-3702 0-2183 0-2020 0-1879 0-1879 0-1879
05 0-8171 0-4535 02713 02515 0-2346 02345 02345
0-6 0-8901 0-5310 0-3231 0-3003 0-2809 0-2808 0-2808
07 09379 0-6021 03737 0-3482 0-3267 0-3266 0-3266
08 09670 0-6665 0-4229 0-3951 0-3718 0-3718 03718
09 09835 0-7239 0-4704 04407 04162 04162 04162
10 0-9923 0-7743 0-5160 0-4851 0-4596 0-4596 0-4596
12 09985 0-8549 06013 0-5690 0-5428 0-5428 0-5428
14 09997 09116 0-6777 0-6456 0-6201 0-6201 0-6201
1-6 0-9999 0-9489 0-7447 0-7142 0-6904 0-6904 0-6903
18 1-0000 09721 0-8019 0-7742 0-7527 0-7527 0-7526
2:0 1-0000 0-9854 0-8497 0-8253 0-8067 0-8067 0-8065
25 — 0-9975 09318 09166 0-9053 09053 0-9052
30 — 0-9993 09733 0-9659 0-9600 0-9600 09599
40 — 1-0000 09974 0-9964 0-9957 09957 09955
50 — — 1-0000 1-0000 1-0000 1-0000 09999
60 — — — — — — 1-0000
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Table 3. Values of the complimentary nondimensional temperature 1 —# as a function of
n and t for n = 0-0 and Pr = 0-7
T = 10 (VN 0-8 1-0 20 50 o
(= 10:0 20 125 10 05 02 00
" —afjon = 212 0-946 0746 0668 0-487 0414 0414
00 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000
o1 0-2088 00944 0-0889 0-0661 0-0486 0-0414 00414
02 0-4036 01874 0-1764 01317 09708 0-0828 0-0828
03 05730 0-2780 0-2617 01964 01453 01242 01242
04 07104 03649 03436 0-2598 0-1931 0-1656 01655
05 08143 0-4470 04214 03214 0:2404 0-2068 0-2067
06 0-8877 0-5237 04940 0-3809 0-2870 (-2478 0:2477
07 0-9360 (5942 05613 0-4380 0-3327 0-2886 0-2885
08 0-9656 06581 06230 0-4925 0-3775 0-3291 0:3290
09 0-9826 07152 06788 0-5440 04213 0-3691 (03690
10 09917 07655 0-7288 0-5925 0-4637 0-4086 0-4085
12 09984 08465 08119 06797 0-5445 0-4856 04855
14 0-9997 09041 0-8744 07537 0-6191 0-5591 0-5590
16 0-9999 0-9428 09193 0-8149 06867 0-6280 0-6279
1-8 1-0000 0-9674 0-9503 0-8641 07468 06916 06915
20 — 0-9822 09707 0-9025 0-7991 07490 07489
25 — 09965 09936 0-9619 0-8971 0-8626 08626
30 — 09991 09989 09872 0:9541 09345 09345
40 — 10000 09999 09991 09942 09906  0:9906
50 — — 1-0000 10000 09997 09994 09993
60 — — — — 1:0000 0-1000 10000
Table 4. Comparison of present surface shear results f, Re}/? with previous solutions
Present ]
T calculation Hall [7] Dennis {8} Nanbu [12] Rayleigh™ [1] Blasius
01 3-5860 — — — 3-5682 —
05 1-6006 — — 1-5967 1-5967 —
10 1-1245 1-1284 1-1284 1-1284 1-1284 -
290 08047 0-8050 08052 — — —
40 0-6693 0-6690 0-6694 — - —
@ 06642 0-6640 0-6642 — — 0-6642
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TRANSFERT DE CHALEUR INSTATIONNAIRE DANS LES
ECOULEMENTS IMPULSIFS DE FALKNER-SKAN

Résumé—On présente des solutions numériques du transfert de chaleur dans une couche limite laminaire
instationnaire résultant de I'écoulement incompressible sur un coin semi-infini mis brusquement en
mouvement. Le mouvement du coin est uniforme aprés I'impulsion de départ. A Pinstant initial du
mouvement, une couche limite thermique en convection forcée est produite par I'application brutale d’une
différence de température constante entre le coin et le fluide. Les solutions pour le développement
simultané des couches limites thermiques et dynamiques ont été obtenues 4 I'aide d’'une méthode de
différences finies par une convergence dans le temps. Les résultats des calculs sont présentés pour plusieurs
angles du coin et pour des nombre de Prandtl moyens.

INSTATIONARER WARMEUBERGANG IN IMPULS-FALKNER-SKAN-STROMUNGEN

Zusammenfassung— Numerische Losungen werden fiir den Wirmeiibergang beschrieben in einer
instationdren laminaren Grenzschicht bei inkompressibler Strémung an einem halbunendlichen Keil mit
Anfangsimpuls. Die Bewegung des Keils ist nach dem Anfangsimpuls stationdr. Bei Bewegungsbeginn
wird eine thermische Grenzschicht mit Zwangskonvektion erzeugt durch das plétzliche Aufbringen einer
konstanten Temperaturdifferenz zwischen Keil und umgebendem Fluid. Losungen fiir die gleichzeitige
Ausbildung der thermischen und hydrodynamischen Grenzschicht werden mit Hilfe eines zeit-
asymptotischen finiten Differenzenverfahrens gewonnen. Die Ergebnisse der Berechnungen werden fiir
verschiedene Keilwinkel angegeben, mit Prandtl-Zahlen in einem mittleren Bereich.

HECTALIMOHAPHBIN TEIMJIOOEMEH B UMITYJIbCHO BO3BYXIAEMBIX
MMOTOKAX ®OJKHEPA-CK3HA

Ammorampst — [IpUBOAATCS YMCIEHHBIE DElIEHHs TernJooOMeHa B HECTALUMOHAPDHOM JIAMHHAPHOM
MOrpaHUYHOM CJI0€, BO3HHKAIOILEM B HECXKHMAEMON KHIKOCTH NPH 00 TexaHKH BHE3ANHO HAaYaBIUEro
IBHraThcd nmonybeckoneynoro knuHa. ITocsie ¥MIyIBECHOTO Havyana ABHXEHHE cTauHoHapHo. Tenno-
BOY MOTPaHMYHBIA CJIOH IPH BBIHYXKIAECHHOK KOHBEKLHH CO3JaETCA 3a CHET BHE3AMHOIO HA/OXEHHSA
NOCTOAHHOM Da3HOCTH TEMIEPATYD MEXAY KJIMHOM M JKHIAKOCTBIO ONHOBPEMEHHO C Havyanom
JABHXEHKA.

C noMoupi0 BpEMEHHO-aCHMIITOTHYECKOTO KOHEYHO-Pa3HOCTHOrO METOAA MOJYYEHb! PEIIEHHS
AJIsi ONHOBPEMEHHOTO pPA3BHTHA TEIUIOBOrO M AMHAMH4ECKOro morpaHuyubix cioés. IlpuBonsrcs
pe3yabTaThl PacyeTOB LI HECKOJBKUX YIJIOB PacTBOpa KJIMHA B JHMaNa3oHe IPOMEXYTOYHBIX

3HaueHMit yncen [Ipanarns.



