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Abstract-Numerical solutions for heat transfer in the unsteady laminar boundary layer resulting from 
incompressible flow past an impulsively-started semi-infinite wedge are described. The motion of the 
wedge is steady after the impulsive start. A forced-convection thermal boundary layer is produced by 
the sudden imposition of a constant temperature difference between the wedge and the fluid as the 
motion is started. Solutions for the simultaneous development of the thermal and momentum boundary 
layers are obtained by a time-~ymptotic finite-different procedure. Results of calculations are presented 

for several wedge angles with Prandtl numbers in the intermediate range. 

NOMENCLATURE 

constant, see equation (18); 
fluid specific heat at constant pressure; 

= 3, local friction coefficient; 

local heat-transfer coefficient; 
fluid thermal conductivity; 
reference length; 
exponent in insiscid velocity relation, see 
equation (1); 

Il,x* 
= -, local Nusselt number; 

k 

= ff, Prandtl number; 

x*up 
= -, local Reynolds number; 

P 

UP 
=- 

L 
, nondimensional time; 

= $/U, nondimensional velocity in surface 
direction; 
reference velocity; 

ULp r/Z 
= (-1 V*lU, 

P 

nondimensional velocity in direction normal 
to surface; 
transformed normal velocity, see 
equation (SC); 
x*/L, nondimensional coordinate along 
surface of wedge; 

nondimensional coordinate normal to wedge. 

Greek symbols 

;: 

wedge angle, see equation (2); 
similarity coordinate, see equation (8a); 

1, transformed normal coordinate, see 
equation (8b); 

0, 
T-T, 

= ~ nondimensional temperature; 
T,-T,’ 

II, fluid viscosity; 

L transformed coordinate, see equation (1 b); 

Pt fluid density; 
d SI surface shear stress; 
7. similarity coordinate, see equation (14). 

Subscripts 

e, conditions at edge of boundary layer; 

w, conditions at surface of wedge. 

Superscript 
* 3 dimensional quantity. 

INTRODUCTION 

THE PROBLEM ofheat transfer in the laminar boundary 
layer resulting from the flow of an incompressible 
fluid past a semi-infinite wedge set impulsively into 
motion is of considerable practical and theoretical 
interest. The heat-transfer problem is idealized as 
follows. The wedge and the f%uid are assumed to be 
initially at the same temperature. A forced-convection 
thermal boundary layer is then produced by the sudden 
imposition of a constant temperature difference be- 
tween the wedge and the fluid as the motion is started. 
The simultaneous development of the thermal and 
momentum boundary layers is the subject to be con- 
sidered herein. 

The evolution of the boundary-layer flow in time is 
characterized by the existence of three distinct flow 
regions. Initially, at a fixed position along the surface 
of the wedge the boundary layers formed are indepen- 
dent of upstream flow history. For a flat plate this 
region is equivalent to the flow analyzed by Rayleigh 
[I] for an infinite plate. Ultimately, the Row tends to 
the familiar self-similar, steady, Falkner-Skan or 
Blasius momentum boundary layers with their asso- 
ciated thermal boundary layers. The intermediate 
region in which the flow develops from the initial to 
the ultimate state is somewhat more complex and its 
solution is more difficult to obtain. 
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FIG. 1. Viscous flow regions for impulsive wedge flow. 

A unified approach to the solution of the boundary- 

layer equations in the three regions is presented in 
this paper. The characteristic arrangement of these 

regions in the x-t plane is illustrated in Fig. 1. 
The salient features of the formulation of the problem 

were described by Stewartson [2] and an approximate 
solution obtained for the momentum boundary layer 
over a flat plate. Approximate solutions of various 
kinds for the flat plate problem have also been obtained 
by several subsequent investigators including Schuh 
[3], Oudart [4], and Cheng and Elliot [S]. These 

approximate solutions suffer from a lack of detail. The 
later numerical solutions of Dwyer [6], Hall [7] and 
Dennis [8] are significant improvements on the earlier 
approximate techniques. Yalamanchili and Benzkofer 
[9] discuss the solution of the problem by the method 

of weighted residuals with the method of lines. More 
recently, Watkins [lo] describes the numerical solution 
by Hall’s [7] method of the associated thermal bound- 
ary layer for the flat plate. 

An approximate solution of the momentum bound- 
ary layer for the more general impulsive wedge flow 
problem was obtained by Smith [ll]. This problem 
was subsequently solved numerically by Nanbu [12] 
using Hall’s basic method with some improved aspects. 
However, until the present work, no solutions of the 
thermal boundary layer associated with the Rayleigh- 
Falkner-Skan momentum boundary layer for wedge 
flow have appeared in the literature. 

ANALYSIS 

The dimensionless velocity for inviscid potential flow 
over a sharp wedge is given by 

u, = x”, n<l (1) 

where x is the dimensionless distance along the surface 
from the leading edge. The exponent n is related to the 
wedge angle r$I where 

(2) 

In impulsive motion of a wedge in an incompressible 

fluid, the inviscid flow described by equation (1) is 
established instantaneously. At the same time, a viscous 
boundary layer begins to develop adjacent to the 
surface. However, the boundary-layer approximation 

dictates that the upstream dependence of the viscous 

flow propagates with a maximum velocity given by the 
local inviscid velocity. Therefore, within the boundary 
layer at a fixed distance x, Rayleigh flow exists until 

the arrival of the portion of the boundary-layer flow 
containing upstream history. The arrival time is 

From which for n # 1 

.x-n 
f=(l-n). (4) 

For II = 1, the stagnation boundary layer, t becomes 

infinite and the boundary layer remains Rayleigh in 
character. 

Gene& equations 

Sufficiently far downstream of the leading edge, the 
governing equations are the unsteady Prandtl bound- 
ary-layer equations for impulsive flow. In nondimen- 

sional form these equations are : 

au au au au, a2u 
t+udx+V~=U’l+- 

6.Y CX L?y2 

aT dT i?T 1 J2T 
guz+vir,! = Frdy2 

(5’4 

(54 

where the effects of frictional heat have been neglected. 
The boundary conditions on equations (5) are, at the 

surface of the plate 

u = ~1 = 0 for any t 

Y=o (6) 
T= T, for t 2 0. 

At the boundary layer edge 

u = u,(x) t > 0 

!:-+a (7) 
T=T, for any t. 

Similarity 

The number of independent variables in the govern- 
ing equations can be reduced from three to two by 
transforming equations (5) into similarity form. This is 
accomplished by introducing the new independent 
variables 

X1-” 

(=- 

(l-n)t 

ltn I12 
?= 2 ! 1 x(“-1)!2 Y VW 

such that [ = 1 represents the boundary between the 
Rayleigh and Falkner-Skan region. Rayleigh flow 
exists for [ 2 1. 
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New dependent variables are defined as follows : 

f’ = u/u, 
T-T, 

(j=- 
L-T, 

v = oy/fj -f’stj 

where 

LE. 

The transformed equations are: 

Pa, b) 

(W 

dV 
~+zai~+f’=o (104 

2~~(f’-~)~+~(/‘i-1)++~=0 (lob) 

26i(f’-l);+v$-;$ = 0. (W 

The transformed boundary conditions are, at the 
surface 

rt=O f’=v=o (11) 
e= 1. 

At the boundary-layer edge 

q+cQ f’=l (12) 
e = 0. 

Equations (10) are singular for the case n = 1 (stag- 
nation flow) with this particular choice of similarity 
variables. The case n = 1 will be treated separately. It 
should be noted that as [ -+ 0 the ordinary differential 
equations for fully-developed Falkner-Skan boundary- 
layer flow are recovered. These are: 

(134 

Nonsingular RayleighJlow equations 
The singularity in equations (10) for the case n = 1 

can be removed by a change of independent variable. 
The relationship between the new independent variable 
t and the old independent variable [ is given by 

7=+= t(n+l)x”_‘. (14) 

Equations (10) then become 

av 
--2rsg+f’=o 
a? 

(2-2rs/‘)~+fl(/“-l)+V~-$ = 0 (15b) 

(2-2*a/.);+v;-;$ = 0. (W 

This form is also convenient in the numerical inte- 
gration procedure used in the Rayleigh region 
(0 < t < l/6) for all cases, including n = 1. The pro- 
cedure will be described in a later section. 

NUMERICAL SOLUTION TECHNIQUES 

Fundamental approach 
Equations (10) resemble the equations for steady 

two-dimensional nonsimilar boundary layers. Unfor- 
tunately, in this case the equations cannot be solved 
by the well-known step-by-step initial value methods 
normally used for the numerical solution of two- 
dimensional boundary layers [ 131, due to the presence 
of the apparent convective velocity term (f’ - LJ. The 
term will be negative in regions of the flow where 
f’ < [, simulating a reverse-flow boundary layer with 
its attendant solution difficulties. Such difficulties are 
caused by the necessity of including the effects of down- 
stream influences in regions of the boundary layer 
where the flow is locally reversed [ 141. Because of this 
requirement, the problem in the transformed domain 
must be posed as a boundary-value problem. The 
boundary values at the upstream end ([ = 0) are given 
by the Falkner-Skan equations, equations (13). At the 
downstreamend the situation is less obvious. However, 
if the downstream boundary is taken as some point 
within the Rayleigh region ([ > l), boundary values 
that are independent of the flow in the transition region 
can be obtained by separate solution of the Rayleigh 
region. For the flat plate the boundary layer equations 
in the Rayleigh region simplify to a form having an 
exact solution [lo]. This simplification does not apply 
to the wedge so that a more general approach must 
be taken. Since in the Rayleigh flow region (f’ - c) is 
always negative, the solution of equations (10) for 
Rayleigh flow can be accomplished by the step-by-step 
integration of equations (10) starting at some point 
sufficiently far downstream for the initial condition to 
be approximated, and then marching upstream until 
the boundary is reached. 

It is advantageous to perform this integration in 
terms of the independent variable 7 over the finite range 
0 < 7 < 71, where 71 < l/6, with the equations in the 
form given by equations (15). 

The previous approaches to the numerical solution 
of this problem are basically of two types. The first, 
due to Hall [6], is to attack the nonsimilar equations 
directly with a time-dependent numerical method using 
an iterative procedure based on satisfying the similarity 
condition to obtain a starting approximation. The 
second appraoch [7] is to finite difference the equa- 
tions in similarity variables solving the problem 
iteratively in the transition region as a boundary value 
problem. First-order upwind differencing is used for 
the convective terms in the reverse flow. 

The approach used in the present work is relatively 
simple conceptually and is a satisfactory alternative to 
the aforementioned approaches. It is akin to the method 
used for the solution of a quasi-steady boundary layer 
with an oscillatory free stream by Phillips and Acker- 
berg [ 151. In applying the present method, the problem 
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is formulated as a time-dependent problem in trans- 
formed coordinates whose asymptotic steady solution 
for large time is the solution to the similar equations, 
equations (10). A second-order finite-difference method 
for threedimensional and unsteady boundary layers 
with reverse flow is used to obtain the time-asymptotic 
solution. This procedure, while exploiting the self- 
similar nature of the solution, allows the computation 
of more complex impulsively started boundary layers 
through the retention of explicit time-de~ndence. For 
example, the method can be easily extended to com- 
pute the oscillatory boundary layer or to compute the 
case where there is a nonuniform free convection 
thermal boundary layer existing before the impulsive 
start. 

Transition region 
The governing equations can be written retaining 

their explicit time-dependence in terms of modified 
similarity variables, with a new independent variable 5 
defined as ,I-## 

t=(l--&t+b)’ “o (16) 

where b is a constant. 
Equations (5) become 

(174 

26(t+b)~~+265(f’-6)~+B(.1”-1) 

+Vg-$=O (17b) 

The surface and inviscid flow boundary conditions for 
equations (17) are given by equations (11) and (12). A 
positive nonzero requirement is placed on the constant 
b such that equations (17) initially apply to a region of 
the wedge 0 < x < x0, finite in extent 

This condition is necessary for the stability of the 
difference scheme as will be discussed later. It also 
allows the simultaneous inte~ation of the equations 
for the Rayleigh flow region with the integration of 
equations (17). The constant b is related to the initial 
extent of the region such that for t = 0 at < = 1 

x = x0 = [b(l -n)J’j” -n). (18) 

For sufficiently large times, the solution of equations 
(17) must asymptotically approach the solution of 
equations (10). 

Rayleigh region 
The Rayleigh flow solution of equations (15) serves 

as the downstream end boundary condition for the 
numerical solution of equations (17). In the present 
work this boundary condition is applied at 5 = 1.25. 

For 5 = 1.25 from equations (16) and (14) there is a 
correspondence between z ant t expressed by the 
relation 

t 
T--T,- 

t+b 
(19) 

where rr = 0.8/d. 
Therefore, the timedependent downstream bound- 

ary condition for equations (17) can be ‘obtained from 
the numerical integration of equations (15) advancing r 
according to equation (19) as time is advanced from 
t = 0 to the asymptotic limit. The choice of 5 = 1.25 
for the downstream boundary which yielded ri = 0.8/S 
was made from experience; the step-by-step numerical 
integration of equations (15) becomes difficult for r 
significantly larger than 0*8/S. A smooth initial profile 
for the solution of equations (15) is desirable to avoid 
problems in starting the numerical integration. It can 
be obtained from the leading term in the perturbation 
solution for small z [16] of each of equations (15a) 
and (15b) 

,f’ = erf[&/(Zs)] + . . . 

B = erfc[g/J(2r/Pr)] + . . . . 

@W 

WW 

The surface and inviscid Sow boundary conditions 
for equations (15) applicable for all T are given by 
equations (11) and (12). 

Upstream boundary and initial conditions 
With the Rayleigh flow as the downstream boundary, 

the other imposed end boundary condition for the 
numerical solution of equations (17) is the solution of 
the Falkner-Skan equations, equations (13), since equa- 
tions (17) reduce to the Falkner-Skan equations at the 
upstream (5 = 0) boundary. The surface and inviscid 
flow boundary conditions are given by equations (11) 
and (12). 

The appropriate initial conditions for the solution 
of the time-dependent equations, equations (17) are at 
t = 0 for q > 0 and 0 < < < 1.25 

f’= 1; 0 = 0. (21) 

Figure 2 illustrates schematically the solution pro- 
cedure in the 5 - t plane. 

FIG. 2. Computational scheme. 
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Finite difference metals RESULTS AND DISCUSSION 

The Krause second-order, zig-zag, finite~ifferen~ 
scheme [ 171 was used for the time-dependent numerical 
solution ofequations (17). It has the feature of utilizing 
downstream information at an earlier time in the 
development of the flow as well as current upstream 
information to predict the properties of a boundary 
layer containing local flow reversal. 

Solutions were computed for n = l-0,0+3333,0.1 111, 
0.0, -00654, and - 0@?05, corresponding to wedge 
angles of X, n/2, n/5,0, - @ 147~ and, - 0.199~ respect- 
ively. Results were obtained for several different Prandtl 
numbers in the intermediate range from Pr = 0.7 to 
Pr = 10.0. 

The method was developed for and has been success- 
fully applied to steady thr~~ime~ional boundary 
fayers with flow reversal [Is], [19]. The unsteady 
boundary layer can be regarded as a special case of 
the three-dimensional boundary layer with one surface 
direction viewed as a time-like coordinate. The pro- 
cedures for the numerical solution are virtually 
identical. 

In the time-asymptotic calculation for the transition 
region the mesh (grid) interval At was taken as 0.05. 
The time-step At was 0.99 of the maximum permissible 
given by equation (23). Steady-state convergence was 
achieved after approximately 200 time-steps. In the 
Rayleigh region the maximum integration step size Ar 
was 0.005. As many as 180 mesh intervals were used 
in the calculation normal to the surface. To reduce 
the amount of computer time required in the transition 
region calculation, the mesh was rezoned in the normal 
direction from a lesser number of mesh intervals as the 
steady state was approached. 

Global truncation error: 0 RAE )*l+O[(Aq )’ l+OC(A? 1’1 

FIG. 3. Computational molecule for Krause method. 

In the present calculation, the computational mol- 
ecule for the method was oriented as shown in Fig. 3. 
Details of the derivation of finite-difference equations 
for the application of the Krause method are given in 
[ 181 and [ 191. The method is an implicit technique. 

For stability [17] and to avoid the amplification of 
round-off errors [20] the time step limitation for the 
Krause method is 

(22) 

which for the present computation effecitvely requires 

At f A{(t+b). (23) 

Hence, at t = 0 difficulties are avoided by requiring 
b > 0. The magnitude of b can also be utilized as a 
parameter to adjust the relative amounts of upstream 
and previous-time information used in the approach to 
the asymptotic steady state. In the present work a value 
of b was used corresponding to x0 = 2.0. 

The step-by-step solution of equations (15) at the 
downstream boundary was obtained using the Crank- 
Nicolson finite-difference method. The two-point 
boundary value problem posed by the Falkner-Skan 
equations at the upstream boundary was solved using 
the fmitedifference method described in [21]. 

The surface heat transfer results expressed in terms 
of Nusselt number are summarized for the positive 
wedge cases in Figs. 4-7. These figures show the 
variation in the quantity Nu, Re; liz with the indepen- 
dent variable t, where Nu, Re;“’ is obtained from the 
slope of the nondimensional temperature profile 
through the relation 

Nu, Re;‘12 = - (qy” tl,=; (24) 

Figures 4-7 can be used to determine the heat-transfer 
coefficient as a function oftime at a given position along 
the surface of the wedge. 

The agreement of the computed heat-transfer results 
in the asymptotic limit as z --+a~ with previously 
obtained steady-state results [22] is within three sig- 
nificant figures. For reference purposes the temperature 
profiles and their wall derivatives are presented in 
tabular form in Tables l-3 for Pr = 0.7 and n = 1.0, 
n = 0.3333 and n = 0.0. 

FIG. 4. Nusselt number variation for n = 1.0. 
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7 

FIG. 5. Nusselt number variation for n = 0.3333. 

-FIG. 6. Nusselt number variation for n = 0.1111. 

Figure 8 shows the computed variation of surface 
shear stress in terms of the friction coefficient fX, where 
fxRe:!’ IS obtained from the slope of the nondimen- 
sional velocity profiles through the relation 

Figure 8 includes the friction coefficient for the two 
negative wedge angle cases computed, one of them 
being the incipient separation case of n = -@0905. The 
heat-transfer solutions for the negative cases were not 
computed because of the contrived nature of the 
physical flow situation that these cases represent 
(suction preceeding a turn). The present results given 
in Fig. 8, agree closely with previously published results 
for the momentum boundary layers on flat plates and 
wedges given in [6], [7] and [ 11 J. 

Table 4 compares the present shear stress results for 
n = 0 with the results of previous investigations. Be- 
cause ofthedifference between the computational mesh 

FIG. 7. Nusselt number variation for n = 0.0. 

FIG. 8. Friction coefficient variation. 

used in the present calculation and that used by Nanbu 
[ll], no direct comparison is possible in the results 
for n # 0. However, by interpolating between mesh 
points for these cases, the agreement in results appears 
to be typified by the reasonably close agreement of 
Table 4. Greater accuracy than that of the present 
results can be achieved by refining the grid. This would, 
of course, increase the computer time required. Since 
in the present investigation many cases were computed, 
it was felt that three significant figures was sufficient 
accuracy for the heat-transfer results obtained. Each 
combination thermal/momentum boundary layer case 
consumed approximately 10-18 min IBM 37O/I45CPU 
time, depending on the Prandtl number. Calculations 
for the larger Prandtl number cases utilized a finer grid 
and consequently, more time. 

In conclusion, the present work indicates that the 
time-asymptotic finite-difference technique can be used 
to advantage in the computation of the unsteady 
Iaminar momentum and thermal boundary layers for 
Rayleigh-Falkner-Skan flows. Further, the results ob- 
tained can be used to estimate the transient heat transfer 
to wedge shapes undergoing unsteady motion charac- 
terized by rapid acceleration to a constant velocity. 
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Table 1. Values of the complimentary nondimensional temperature 1 - 0 as a function of 
n and r for n = 1.0 and Pr = 0.7 

7= 0.1 0.5 1.0 2.0 4.0 10.0 

rl -aejarl = 2.14 0.989 0.729 0.582 0.510 0.496 

0.0 OGOOO OGOOO OQOOO OGOOO OGOOO 04000 00300 
0.1 0.2107 0.0987 0.0736 0.0582 0.0510 0.0496 0.0496 
0.2 0.4072 0.1961 0.1467 0.1162 0.1020 OG992 0.0992 
0.3 0.5780 0.2909 0.2189 0.1739 0.1528 0.1487 0.1487 
0.4 0.7162 0.3818 0.2897 0.2311 0.2035 0.1980 0.1980 
0.5 0.8200 0.4676 0.3584 0.2874 0.2537 0.2470 0.2470 

0.6 
0.7 
0.8 
0.9 
1.0 

1.2 
1.4 
1.6 
1.8 
2.0 

0.8927 
0.9398 
0.9684 
0.9844 
0.9928 

0.5473 
0.6202 
0.6856 
0.7434 
0.7936 

0.8722 
0.9254 
0.9590 
0.9787 
0.9896 

0.4247 
0.4880 
0.5479 
0.6040 
0.6560 

0.3428 
0.3968 
0.4492 
0.4997 
05481 

0.6376 
0.7162 
0.7833 
0.8387 
0.8830 

0.3034 0.2955 
03523 0.3435 
0.4003 0.3906 
0.4472 0.4367 
0.4926 0.4815 

0.9987 
0.9998 
1GOoo 
1~cQOO 

- 

0.5786 0.5668 
0.6569 0.6450 
0.7264 0.7149 
0.7865 0.7759 
0.8370 0.8277 

0.2955 
0.3435 
0.3906 
0.4367 
0.4815 

0.5668 
0.6450 
0.7149 
0.7759 
0.8277 

2.5 
3.0 
4.0 
5.0 
6.0 

_ 0.9984 
0.9995 
0.9999 
1.0000 

_ 

0.7469 
0.8203 
0.8769 
0.9188 
0.9483 

0.9980 
0.9994 
0.9996 
0.9999 
1NNlO 

0.9532 0.9247 0.9193 0.9193 
0.9838 0.9697 09675 0.9675 
0.9982 0.9974 0.9968 0.9968 
0.9999 0.9999 0.9999 0.9999 
1.0000 1GOoO 1wOo 1GlOo 

0%6 

Table 2. Values of the complimentary nondimensional temperature 1 - 6 as a function of 
q and r for n = 0.3333 and Pr = 0.7 

r= 0. I 0.5 1.60 2.0 4.0 10.0 i= 20.0 4.0 1.25 1.0 0.5 0.2 0.7 
tl -aejaq = 2.13 0.961 0.552 0.508 0.471 0.47 1 0.471 

0.0 O~OCQO OWOO 00000 OGMO 00000 0 WI0 00000 
0.1 02098 0.0958 0.05512 0.0508 0.0471 0.0471 0.047 1 
0.2 0.4054 0.1903 0.1100 0.1015 0.0941 0.0941 0.094 1 
0.3 0.5755 0.2822 0.1645 0.1519 0.1411 0.1411 0.1411 
0.4 0.7132 0.3702 0.2183 0.2020 0.1879 0.1879 0.1879 
0.5 0.8171 0.4535 0.2713 0.2515 0.2346 0.2345 0.2345 

0.6 0.8901 0.5310 03231 0.3003 0.2809 0.2808 0.2808 
0.7 0.9379 0.602 1 0.3737 0.3482 0.3267 0.3266 0.3266 
0.8 0.9670 0.6665 0.4229 0.3951 0.3718 0.3718 0.3718 
0.9 0.9835 0.7239 0.4704 0.4407 0.4162 0.4162 0.4162 
1.0 0.9923 0.7743 0.5160 0.4851 0.4596 0.4596 0.4596 

1.2 0.9985 0.8549 0.6013 0.5690 0.5428 0.5428 0.5428 
1.4 0.9997 0.9116 0.6777 0.6456 0.6201 0.6201 0.6201 
1.6 0.9999 0.9489 0.7447 0.7142 0.6904 0.6904 0.6903 
1.8 1GOOO 0.9721 0.8019 0.7742 0.7527 0.7527 0.7526 
2.0 1.0000 0.9854 0.8497 0.8253 0.8067 0.8067 0.8065 

2.5 0.9975 0.9318 0.9166 0.9053 0.9053 0.9052 
3.0 0.9993 0.9733 0.9659 0.9600 0.9600 0.9599 
4.0 - 1WOO 0.9974 0.9964 0.9957 09957 0.9955 
5.0 1~OcQO l.OOQo 1QOOO 1ClOOO 09999 
6.0 - 1QOOO 
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Table 3. Values of the complimentary nondimensional temperature 1-N as a function of 
q and z for n = 0.0 and Pr = 0.7 

7= 1.0 0.5 0.8 1.0 

i= 100 2,O 1.25 130 
4 - aejall = 2.12 0946 0.746 0,668 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

0.6 
0.7 
0.8 
0.9 
1.0 

1.2 
1.4 
1.6 
1.8 
20 

2.5 
3.0 
4.0 
5.0 
6.0 

omoo 
0.2088 
0.4036 
0.5730 
0.7104 
0.8143 

0.8877 
0.9360 
0.9656 
0.9826 
0.9917 

0.9984 
0.9997 
0.9999 
1+000 

- 

- 
- 

OGOOQ OQOOO 
(30944 0.0889 
@1874 0.1764 
0.2780 0.2617 
03649 Q3436 
04470 0.4214 

05237 
0.5942 
0.658 1 
0.7152 
0.7655 

08465 
09041 
09428 
0.9674 
0.9822 

0.9965 
09991 
l%Ioo 

0.4940 
0.5613 
0.6230 
0.6788 
0.7288 

0.8119 
0.8 744 
0.9193 
0.9503 
0.9707 

0.9936 
0.9989 
0.9999 
1+%000 

0~0000 
0.066 1 
0.1317 
0.1964 
0.2598 
0.3214 

0.3809 
0,4380 
0.4925 
0.5440 
0.5925 

06791 
0.1537 
0.8149 
0.864 1 
0.9025 

O-9619 
0.9872 
o-999 1 
l@ooo 

2.0 5.0 
0.5 0.2 
0.487 0.414 

-----._ I_____ 

@OooO O+-IOOO 
0.0486 0.0414 
0.9708 0.0828 
0.1453 0.1242 
0~1931 01656 
0.2404 0.2068 

0.2870 0.2478 
0.3327 0.2886 
0.3775 0.329 1 
0.4213 0.3691 
0.4637 0.4086 

0.5445 0.4856 
0.6191 0.5591 
0.6867 0.6280 
0.7468 0.6916 
0.7991 O-7490 

0.8971 0.8626 
0‘9541 0.9345 
0.9942 0.9906 
0.9997 0.9994 
1~0000 0~1000 

0.2 
0.414 

o-0000 
00414 
00828 
01242 
O-1655 
0.2067 

0.2477 
02885 
0.3290 
03690 
04085 

0.4855 
0.5590 
0.6279 
06915 
0.7489 

0.8626 
@9345 
09906 
09993 
1-0000 

Table 4. Comparison of present surface shear resultsf,Ref” with previous solutions 

Present 
z calculation Hall [7] Dennis [S] Nanbu [12] Rayleigh. [1] Blasius 

0.1 35860 - - 3.5682 
05 160% 1.5967 1.5967 
I.0 I,1245 1.1284 1.1284 l-1284 1.1284 - 
2.0 08047 0,8050 0.8052 - 
4.0 0.6693 0.6690 0.6694 - - - 
co @6642 0.6640 0.6642 - 0.6642 
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TRANSFERT DE CHALEUR INSTATIONNAIRE DANS LES 
ECOULEMENTS IMPULSIFS DE FALKNER-SKAN 

R&urn&-On prbente des solutions numtriques du transfert de chaleur dans une couche limite laminaire 
instationnaire r&s&ant de l’tioulement incompressible sur un coin semi-infini mis brusquement en 
mouvement. Le mouvement du coin est uniforme aprb l’impulsion de d&part. A l’instant initial du 
mouvement, une couche limite thermique en convection for& est produite par I’application brutale d’une 
diffkrence de temptrature constante entre le coin et le fluide. Les solutions pour le dheloppement 
simultant des couches limites thermiques et dynamiques ont CtC obtenues g l’aide d’une m&hode de 
diffirences finies par une convergence dans le temps. Les r&sultats des calculs sont prbentb pour plusieurs 

angles du coin et pour des nombre de Prandtl moyens. 

INSTATIONARER WARMEUBERGANG IN IMPULS-FALKNER-SKAN-STRijMUNGEN 

Zusammenfassung-Numerische L6sungen werden fiir den WLmetibergang beschrieben in einer 
instationlren laminaren Grenzschicht bei inkompressibler Strijmung an einem halbunendlichen Keil mit 
Anfangsimpuls. Die Bewegung des Keils ist nach dem Anfangsimpuls stationlr. Bei Bewegungsbeginn 
wird eine thermische Grenzschicht mit Zwangskonvektion erzeugt durch das .plbtzliche Aufbringen einer 
konstanten Temperaturdifferenz zwischen Keil und umgebendem Fluid. LGsungen fiir die gleichzeitige 
Ausbildung der thermischen und hydrodynamischen Grenzschicht werden mit Hilfe eines zeit- 
asymptotischen finiten Differenzenverfahrens gewonnen. Die Ergebnisse der Berechnungen werden fiir 

verschiedene Keilwinkel angegeben, mit Prandtl-Zahlen in einem mittleren Bereich. 

HECTAIQIOHAPHbIfi TEl-IJIOO~MEH B kiMl-IYJIbCHO B036YxJJAEMbIX 
I-IOTOKAX QOJIKHEPA-CK3HA 

AWEOmlpln - npHBO/JaTCB ‘iUCJIeIiHble pemeHHB TenJlOO6MeHa B HeCTaUUOHapHOM JIaMBHapHOM 
ITOrpaHHYHOM CJIOe, B03HHKaIOIUeM B HeCmHMaeMOi XKWAKOCTR npH 06TeKaHHH BHe3anHO Ha’iaBUleI-0 
ABHl%TbCK nOJIyt%KOHe’iHOrO KJlWHa. nOCJIe HMnynbCHOrO HaYaJta ABWXCeHWe CTaUwOHapHO. Tenno- 
dolt norpaHHrHbrB cnok npw BbniyxAeHHofi KoHBeKww c03AaeTcK sa cYeT Bne3annoro HanoXemin 
ITOCTORHHOfi pa3HOCTB TeMnepaTyp MexAy KnUHOM U )I(UAKOCTbH3 OAHOBpeMeHHO C HaYaJlOM 
ABH)l(eHWII. 

c lTOMOmbK) BpeMeHHO-aCHMnTOTH’leCKOr0 KOHe’fHO-pa3HOCTHOrO MeTOAa nOJlyYeHbi pemeHHR 
.qna oAHospeMexiaor0 pa3miTUn Tennoaoro li nm4aMu4ecxoro norpaaassb1x cnoh. ITp~~o~fl~cfl 
pe3yJlbTaTbI paCYeTOB AJIH HeCKOnbKHX yrnOB paCTBOpa KJtHHa B AHana3OHe npOMe)KyTOYHbIX 

3HageHufi YHCeJl npaHATJIB. 


